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Abstract

This paper studies the vibration characteristics of a rotating tapered cantilever Bernoulli–Euler beam
with linearly varying rectangular cross-section of area proportional to xn, where n equals to 1 or 2 covers
the most practical cases. In this work, the differential transform method (DTM) is used to find the
nondimensional natural frequencies of the tapered beam. Numerical results are tabulated for different taper
ratios, nondimensional angular velocities and nondimensional hub radius. The effects of the taper ratio,
nondimensional angular velocity and nondimensional hub radius are discussed. The accuracy is assured
from the convergence of the natural frequencies and from the comparisons made with the studies in the
open literature. It is shown that the natural frequencies of a rotating tapered cantilever Bernoulli–Euler
beam can be obtained with high accuracy by using DTM.
r 2005 Published by Elsevier Ltd.
1. Introduction

The differential transform method (DTM) is based on the Taylor series expansion and appears
to have been first introduced by Zhou in 1986 [1]. It has been applied to vibration analysis of a
tapered bar recently [2]. In this contest Chung and Yoo developed a new dynamic modeling
method using stretch deformation [3]. They showed that, two of the linear differential equations
see front matter r 2005 Published by Elsevier Ltd.
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Fig. 1. Configuration of a rotating tapered cantilever Bernoulli–Euler beam.
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are coupled through the stretch (i.e. in the radial direction) and the chordwise (i.e. in the plane of
rotation) deformations. On the other hand, the differential equation related to the flapwise (i.e. in
the direction perpendicular to the plane of rotation) deformation was considered to be uncoupled.
In this work, flapwise bending vibration of a rotating tapered cantilever Bernoulli–Euler beam

is studied by using the DTM. In Fig. 1, a cantilever tapered beam of length L, which tapers to a
height h and which is fixed at point o to a rigid hub with radius r, is shown. The beam is assumed
to be rotating at a constant angular velocity O. In the right-handed Cartesian coordinate system
shown, the origin is taken to be at the left-hand end of the beam. The X-axis coincides with the
neutral axis of the beam in the undeflected position, the Z-axis is parallel to the axis of rotation
(but not coincidental) and the Y-axis lies in the plane of rotation. The principal axes of the beam
cross-sections are, therefore, parallel to Y and Z directions, respectively. The system is able to flex
in the Z direction (flapping motion) and in the Y direction (lead-lag motion). These two motions
can be coupled only through Coriolis forces, but for the system shown in the present analysis, this
coupling is ignored.
2. Equation of motion

The assumptions for the tapered beam are as follows

AðxÞ ¼ Ag 1�
cx

L

� �n

, (1)

IyyðxÞ ¼ Iyyg 1�
cx

L

� �nþ2

, (2)

IzzðxÞ ¼ Izzg 1�
cx

L

� �nþ2

, (3)

where A, Iyy, Izz are the cross-sectional area and second moment of areas about the Y and Z axes,
respectively. The subscript g denotes a value at g in Fig. 1 corresponding to the left-hand end of
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the tapered beam and c is a constant called the taper ratio which must be such that co1 because
otherwise the beam tapers to zero between its ends. Values of n ¼ 1 or 2 cover the most practical
cases because n ¼ 1 gives linear variation of the area of the cross-section and cubic variation of
the second moment of area along the length, whereas n ¼ 2 are the second and fourth orders.
Thus, a large number of solids or thin-walled cross-sections can be represented by using the values
of n as 1 or 2. Young’s modulus E, shear modulus G and density of the material r, are assumed to
be constant so that the mass per unit length rA, the bending rigidities EIyy and EIzz and the shear
rigidity kAG vary according to Eqs. (1)–(3) [4].
The centrifugal tension force T(x) at a distance x from the origin is given by

TðxÞ ¼

Z L

x

rAO2ðr þ xÞdx. (4)

According to the Bernoulli–Euler theory, the governing differential equation for the flapwise
bending motion is given by

rA
q2w
qt2

þ
q2

qx2
EI

q2w
qx2

� �
�

q
qx

T
qw

qx

� �
¼ pw, (5)

where w is the deflection and pw is the applied force per unit length, both in the flapwise direction.
For a cantilever beam, four boundary conditions are given by

w ¼
qw

qx
¼ 0 at x ¼ 0; (6)

q2w
qx2

¼
q3w
qx3

¼ 0 at x ¼ L. (7)

3. Nondimesionalisation of principal parameters

The dimensionless parameters for the element location, the hub radius and the angular velocity
respectively are as follows [5]:

x ¼
x

L
; d ¼

r

L
; g2 ¼

rAgO2L4

EIg

. (8)

Substituting the dimensionless parameters and the tapered beam assumptions into Eq. (4) will
lead to the nondimensional centrifugal tension force expression

T ¼ M ð1� cxÞnþ1ð1þ 2cdþ cndþ cxþ ncxÞ � ð1� cÞnþ1ð1þ 2cdþ cndþ c þ ncÞ
� �

, (9)

where

M ¼
rAgO2L2

c2ðn þ 2Þðn þ 1Þ
.
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Ö. Özdemir, M.O. Kaya / Journal of Sound and Vibration 289 (2006) 413–420416
By substituting this nondimensional centrifugal tension force expression into the flapwise
bending equation and accepting n ¼ 1, Eq. (5) becomes

1

g2
d

dx2
1� cxð Þ

3 d
2w

dx2

� 	
� wl2 1� cxð Þ

�
1

6c2
d

dx
1� cxð Þ

2 1þ 3dc þ 2cxð Þ � 1� cð Þ
2 1þ 3dc þ 2cð Þ

� �dw

dx


 �
¼ 0. ð10Þ

By using the dimensionless parameters, the boundary conditions stated in Eqs. (6) and (7) can be
expressed as

w ¼
dw

dx
¼ 0 at x ¼ 0, (11)

d2w

dx2
¼
d3w

dx3
¼ 0 at x ¼ 1. (12)

4. Differential transform method

The differential transform of a function f in one variable is defined as follows

F k½ � ¼
1

k!

dkf ðxÞ

dxk

 !
x¼x0

. (13)

And the inverse transformation is defined as

f ðxÞ ¼
X1
k¼0

ðx � x0Þ
kF k½ �. (14)

Theorems that are frequently used in the transformation procedure are introduced in Table 1.
Table 1

Basic theorems of DTM

Original function DTM

f xð Þ ¼ g xð Þ 	 h xð Þ F k½ � ¼ G k½ � 	 H k½ �

f xð Þ ¼ lg xð Þ F k½ � ¼ lG k½ �

f xð Þ ¼ g xð Þh xð Þ
F ½k� ¼

Xk

l¼0

G½k � l�H½l�

f ðxÞ ¼
dng

dxn
ðxÞ F k½ � ¼

k þ nð Þ!

k!
G k þ n½ �

f xð Þ ¼ xn

F k½ � ¼ d k � nð Þ ¼
0 if kan;

0 if k ¼ n
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5. Solution

By applying the DTM to Eqs. (10)–(12) at x0 ¼ 0, and using the relationships defined in
Table 1, the following equations are obtained:

W 0½ � ¼ W 1½ � ¼ 0, (15)

and X1
k¼2

kðk � 1ÞW k½ � ¼
X1
k¼3

kðk � 1Þðk � 2ÞW k½ � ¼ 0, (16)

and

k þ 1ð Þ k þ 2ð Þ k þ 3ð Þ k þ 4ð ÞW k þ 4½ � � 6c þ 3ckð Þ k þ 1ð Þ k þ 2ð Þ k þ 3ð ÞW k þ 3½ �

þ 6c2 þ 12c2k þ 3c2 k2 � k
� �

�
g2

6
3þ 6d� 3dc � 2cð Þ

� 	
k þ 1ð Þ k þ 2ð ÞW k þ 2½ �

� 6c3k þ 6c3 k2 � k
� �

þ c3 k � 2ð Þ k2 � k
� �

� g2d k þ 1ð Þ
� �

k þ 1ð ÞW k þ 1½ �

þ �o2 þ g2 k � dckð Þ þ
g2

2
k2 � k
� �

1� dcð Þ

� 	
W k½ �

þ o2c � g2 ck � cð Þ �
g2c
3

k � 2ð Þ k � 1ð Þ

� 	
W k � 1½ � ¼ 0. ð17Þ

Here W k½ � is the differential transform of w xð Þ. By using Eqs. (15–17), W k½ � values for k ¼

4; 5; 6; 7 . . . can now be evaluated in terms d, o, c2, c3 and g. These values were achieved by using
the Mathematica software package. The results for the values c ¼ 0, d ¼ 0 and n ¼ 1 are as
follows

W 2½ � ¼ c2,

W 3½ � ¼ c3,

W 4½ � ¼
c2k

2

24
,

W 5½ � ¼
c3k

2

40
,

W 6½ � ¼
c2k

4

1440
�

c2k
2
ð3� o2Þ
360

,

W 7½ � ¼
c3k

4

3360
�

c3k
2
ð6� o2Þ
840

,

W 8½ � ¼ �
c2k

4
ð10� o2Þ
40320

þ
k2

112

c2k
4

1440
�

c2k
2
ð3� o2Þ
360

� 	
.



ARTICLE IN PRESS
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The coefficients are obtained to numerical accuracy and the constants c2 and c3 that appear in
W k½ �’s are given by

c2 ¼ W 2½ � ¼
1

2!

d2w

dx2

� �
x¼0

; c3 ¼ W 3½ � ¼
1

3!

d3w

dx3

� �
x¼0

. (18)

6. Results and discussion

For various values of the nondimensional hub radius, d, and the nondimensional angular
velocity, g, and for the value n ¼ 1, the nondimensional natural frequencies, o are to be
determined. In Table 2, variation of the first three nondimensional natural frequencies with
respect to nondimensional angular velocity, g, is shown together with comparative values reported
in literature [6,7]. The taper ratio, c, is taken to be 0.5 in the analysis. The angular velocity and
hub radius have significant effects on the values of the natural frequencies as can be seen from the
results shown in Table 2. For a better insight and also in order to establish the trend, these effects
are shown in Fig. 2. The lowest three nondimensional natural frequencies are plotted for two cases
of the nondimensional hub radius, d. The nondimensional natural frequencies, o, increase as the
nondimensional angular velocity, g, increases and the rate of increase becomes larger with the
increase in d. This is due to the effect of centrifugal tension force which increases as the angular
velocity and the hub radius are increased, as expected [8]. In Table 3, variation of the natural
frequencies with respect to the taper ratio, c, is given and in Fig. 3, these calculated values are
plotted.
Table 2

Variation of the first three nondimensional natural frequencies, o, with respect to the nondimensional angular velocity,
g, and the nondimensional hub radius, d, for c ¼ 0:5 and n ¼ 1

Nondimensional

angular velocity,

g

Nondimensional

natural frequency,

o

d ¼ 0 d ¼ 2

DTM Ref. [6] DTM Ref. [7]

1 o1 3.98662 3.98660 4.38668 4.38580

o2 18.47400 18.47400 18.87950 18.87400

o3 47.41700 47.41700 47.83080 47.81500

2 o1 4.43680 4.43680 5.74260 5.74170

o2 18.93660 18.93700 20.47300 20.46800

o3 47.87160 47.87200 49.48660 49.47200

3 o1 5.09268 5.09270 7.45275 7.45190

o2 19.68390 19.68400 19.87947 22.87400

o3 48.61890 48.61900 52.12050 52.10600

4 o1 5.87796 5.87880 9.31032 9.30940

o2 20.68500 20.68500 25.86624 25.86100

o3 49.64560 49.64600 55.58160 55.56700
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Fig. 2. Variation of the nondimensional natural frequencies, o, with respect to the nondimensional angular velocity, g,
and the nondimensional hub radius, d. (——, d ¼ 0; - - - -, d ¼ 2) (Table 2).

Table 3

Variation of the nondimensional natural frequencies, o, with respect to the taper ratio, c, for n ¼ 1, d ¼ 0 and g ¼ 1

Taper ratio, c Nondimensional natural frequencies

o1 o2 o3 o4 o5 o6

0 3.68165 22.18101 61.84176 121.05092 200.01155 299.14398

0.1 3.72398 21.48633 59.12560 115.33684 190.29792 283.98056

0.2 3.77313 20.77109 56.33928 109.46858 180.31562 268.86012

0.3 3.83109 20.03269 53.47071 103.41803 170.01455 253.25597

0.4 3.90076 19.26810 50.50395 97.14744 159.32681 237.04102

0.5 3.98662 18.47401 47.41728 90.60393 148.15651 220.08215

0.6 4.09594 17.64739 44.17999 83.70989 136.36346 202.16917

0.7 4.24170 16.78843 40.74909 76.35410 123.75992 183.46700

0.8 4.45396 15.93941 37.14266 68.51031 110.26864 162.53781

0.9 4.84443 15.54665 34.26288 61.47543 97.15930 141.04833
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As it can be seen from the results, the nondimensional natural frequencies increase as the
angular velocity increases due to the stiffening effect of rotation, while they decrease as the taper
ratio increases due to the softening effect resulting from the decrease of the cross-sectional area.
However, it has been observed that a critical taper ratio exists, after which the frequencies of a
rotating tapered beam reverse their trend of change. It is obvious that the stiffening effect due to
rotation becomes more dominant than the softening effect resulting from the decrease of the
cross-sectional area, thus rendering the beam stiffer [9].
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Fig. 3. Variation of the nondimensional natural frequencies with respect to the taper ratio, c, for the six lowest modes

of the beam (Table 3).
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